Theory of machinery

Chapter two

Position analysis

By

Laith Batarseh

Position analysis

To perform position analysis, you must have the links dimensions and the location of fixed points and find the position relationships between all moving links.

Position analysis

The mechanism shown in figure is assumed to have $d_{1}, d_{2}, d_{3}, d_{4}$ and θ_{1} (the angle between the grounded links) as given data (position of fixed points and dimensions of links) and θ_{2} as input and the required is to find both θ_{3} and θ_{4}.

Position analysis

 both θ_{3} and S.

Position analysis

4-bar mechanism

Assume the there is the following 4-bar mechanism where $d_{1}, d_{2}, d_{3}, d_{4}$ and θ_{1} are given data and θ_{2} is input and the required is to find both θ_{3} and θ_{4}

Position analysis

4-bar mechanism

Solution:
\square Draw a dividing line from points \boldsymbol{A} and $\boldsymbol{O}_{\mathbf{4}}$. this line has a length equal \mathbf{z}.
\square A new two angels developed: $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$.
\square Name the angle between links 2 and 3 as $\boldsymbol{\gamma}$

Position analysis

4-bar mechanism

Solution:
\square Take the triangle $\mathrm{o}_{4}-\mathrm{A}-\mathrm{o}_{2}$
\square Apply the cosine low: $z^{2}=d_{1}^{2}+d_{2}^{2}-2 d_{1} d_{2} \cos \left(\theta_{2}-\theta_{1}\right)---(1)$
\square Apply cosine low again to find β : $d_{2}^{2}=z^{2}+d_{1}^{2}-2 z d_{1} \cos (\beta)---(2)$
\square Rearrange Eq. 2

$$
\beta=\cos ^{-1}\left(\frac{d_{2}^{2}-z^{2}-d_{1}^{2}}{-2 z d_{1}}\right)
$$

Position analysis

4-bar mechanism

Solution:
\square Take the triangle $\mathrm{o}_{4}-\mathrm{A}-\mathrm{B}$
\square Apply the cosine low:

$$
z^{2}=d_{3}^{2}+d_{4}^{2}-2 d_{3} d_{4} \cos (\gamma)---(3)
$$

DRearrange Eq. 3

$$
\gamma=\cos ^{-1}\left[\frac{z^{2}-d_{3}^{2}-d_{4}^{2}}{-2 d_{3} d_{4}}\right]
$$

\square Remember: z is obtained from
Eq.1.

Position analysis

4-bar mechanism

Solution:
\square Take the same triangle o_{4} - A - B
\square Apply the cosine low to find the angle α :

$$
d_{3}^{2}=z^{2}+d_{4}^{2}-2 z d_{4} \cos (\alpha)---(4)
$$

\square Rearrange Eq. 4 :

$$
\alpha=\cos ^{-1}\left[\frac{d_{3}^{2}-z^{2}-d_{4}^{2}}{-2 z d_{4}}\right]
$$

DFinally: $\theta_{3}=180-\alpha-\gamma$

Position analysis

Slider crank mechanism

Assume the there is the following slider crank mechanism where L, R and Θ_{1} are given data and Θ_{2} is input and the required is to find both ϕ and x

Position analysis

Slider crank mechanism

Solution

\square Drop a perpendicular line from point A to line $O B$ as shown. The length of this line is z .
\square As shown: $L_{O C}+L_{B C}+\boldsymbol{x}=R+L$. this is the $1^{\text {st }}$ equitation.
\square Take the triangle OAC.
$\square U$ using sine law to find $\mathrm{z}: \mathbf{z}=\boldsymbol{R} \boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\theta}_{2}\right)$
\square You can find that $\boldsymbol{\alpha}=\mathbf{9 0}-\boldsymbol{\theta}_{\mathbf{2}}$. After knowing all the angels of triangle OAC, we can find the distance $L_{o c}$ using cosine law

Position analysis

Slider crank mechanism

OOr $L_{o c}$ can be found easily by : $\boldsymbol{L}_{o c}=\boldsymbol{R} \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\theta}_{2}\right)$. As you can see, you can find the distance $L_{\text {oc }}$ in many ways
\square Let us go to the triangle $A B C$: the angle β can be found as : $\beta=\boldsymbol{\operatorname { s i n }}^{-1}(z / R)$ directly. In direct way: $\phi=180-\beta$.
$\square L_{C B}=L \cos (\beta)$.
\square Back to the first equation: $\boldsymbol{x}=R+L-\left(L_{O C}+L_{C B}\right)$

Position analysis

Using vector algebra

The most common and the easiest way to perform position analysis is by using vector algebra. In this method, the links are assumed as vectors. So, it is convenient at this stage to review some of the vector algebra principles. Because we are dealing with planner mechanisms, the vectors that represent the links are in two dimensional forms:

$$
\vec{V}=L \cos (\theta) i+L \sin (\theta) j=L U_{\theta}
$$

\vec{V} is a vector
$\cdot L$ is the vector length
$\cdot \Theta$ is the polar position of the vector(or the angle between the vector and the x -axis)
$\bullet i$ and j are unit vectors in x and y dimensions respectively.

- U_{θ} is a unit vector in the direction of $\Theta: \quad U_{\theta}=\cos (\theta) i+\sin (\theta) j$

Position analysis

Using vector algebra

If we assume that V_{1} and V_{2} are vectors represented as:
$V_{1}=L_{1} \cos \left(\theta_{1}\right) i+L_{1} \sin \left(\theta_{1}\right) j=L_{1} U_{\theta 1}$ and $V_{2}=L_{2} \cos \left(\theta_{2}\right) i+L_{2} \sin \left(\theta_{2}\right) j=L_{2} U_{\theta 2}$

Then

$$
\begin{aligned}
& V_{1} \pm V_{2}=\left[L_{1} \cos \left(\theta_{1}\right) \pm L_{2} \cos \left(\theta_{2}\right)\right] i+\left[L_{1} \sin \left(\theta_{1}\right) \pm L_{2} \sin \left(\theta_{2}\right)\right] j \\
& V_{1} \bullet V_{2}=L_{1} L_{2} \cos \left(\theta_{2}-\theta_{1}\right) \\
& R=V_{1} x V_{2} \Rightarrow|R|=L_{1} L_{2} \sin \left(\theta_{2}-\theta_{1}\right)
\end{aligned}
$$

Position analysis

Performing position analysis using vectors

To perform position analysis using vector algebra, follow the following steps
>Connect between kinematic pairs using vector (i.e. by lengths and angels)
$>$ Using vector algebra to find vector equations that satisfy the mechanism connectivity.
-Solve these equations in term of vector parameters relating known quantities to unknown quantities

Position analysis

4-bar mechanism: vector algebra approach

As in the previous example, $d_{1}, d_{2}, d_{3}, d_{4}$ and Θ_{1} are given data and Θ_{2} is input and the required is to find both θ_{3} and θ_{4}

Position analysis

4-bar mechanism: vector algebra approach

Vector equation

The vector equation can be derived as shown in Eq. 1

$$
\overrightarrow{d_{2}}+\overrightarrow{d_{3}}=\overrightarrow{d_{1}}+\overrightarrow{d_{4}}--(1)
$$

Position analysis

4-bar mechanism: vector algebra approach

Vector equation
All the vectors in Eq. 1 can be represent as:-

$$
\begin{align*}
& \overrightarrow{d_{1}}=d_{1} U_{\theta_{1}} \\
& \overrightarrow{d_{2}}=d_{2} U_{\theta_{2}} \tag{2}\\
& \overrightarrow{d_{3}}=d_{3} U_{\theta_{3}} \\
& \overrightarrow{d_{4}}=d_{4} U_{\theta_{4}}
\end{align*}
$$

Where: d_{1}, d_{2}, d_{3} and d_{4} are the lengths of the links $1,2,3$ and 4 respectively and $U_{\theta 1}, U_{\theta 2}, U_{\theta 3}$, and $U_{\theta 4}$ are unit vectors in the direction for the links $1,2,3$ and 4 respectively.

Position analysis

4-bar mechanism: vector algebra approach

Vector equation

Substitute Eq. 1 in Eq.2:-

$$
d_{2} U_{\theta 2}+d_{3} U_{\theta 3}=d_{1} U_{\theta 1}+d_{4} U_{\theta 4}--(3)
$$

Rearrange

$$
\begin{gathered}
d_{3} U_{\theta 3}=d_{1} U_{\theta 1}+d_{4} U_{\theta 4}-d_{2} U_{\theta 2}--(4) \\
\text { loop closure equation }
\end{gathered}
$$

Position analysis

4-bar mechanism: vector algebra approach

Vector equation

$>$ Dot product each side by itself to eliminate U_{θ} (e.g. $d_{3} U_{\theta 3} \bullet d_{3} U_{\theta 3}=d_{3}^{2}$).
$>$ The dot product for the right side is calculated as:-

$$
\begin{equation*}
\left(d_{1} U_{\theta 1}+d_{4} U_{\theta 4}-d_{2} U_{\theta 2}\right)\left(d_{1} U_{\theta 1}+d_{4} U_{\theta 4}-d_{2} U_{\theta 2}\right) \tag{5}
\end{equation*}
$$

$=d_{1}^{2}+2 d_{1} d_{4} \cos \left(\theta_{1}-\theta_{4}\right)-2 d_{1} d_{2} \cos \left(\theta_{1}-\theta_{2}\right)+d_{4}^{2}-2 d_{4} d_{2} \cos \left(\theta_{4}-\theta_{2}\right)+d_{2}^{2}$
Remember: $V_{1} \bullet V_{2}=L_{1} L_{2} \cos \left(\theta_{2}-\theta_{1}\right)$
-Eq. 5 equals the dot product of the left side of Eq. 4 which is simply d_{3}^{2}
Now, we have a single scalar equation with one unknown: Θ_{4}

Position analysis

4-bar mechanism: vector algebra approach

Vector equation

$$
\begin{equation*}
d_{1}^{2}+2 d_{1} d_{4} \cos \left(\theta_{1}-\theta_{4}\right)-2 d_{1} d_{2} \cos \left(\theta_{1}-\theta_{2}\right)+d_{4}^{2}-2 d_{4} d_{2} \cos \left(\theta_{4}-\theta_{2}\right)+d_{2}^{2}=d_{3}^{2}- \tag{6}
\end{equation*}
$$

Note that: $\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) ; \cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b)$

Apply the previous identity to Eq.6:

$$
\begin{aligned}
& d_{1}^{2}+d_{2}^{2}+d_{4}^{2}-d_{3}^{2}-2 d_{1} d_{2} \cos \left(\theta_{1}-\theta_{2}\right)+2 d_{1} d_{4}\left[\cos \left(\theta_{1}\right) \cos \left(\theta_{4}\right)+\sin \left(\theta_{1}\right) \sin \left(\theta_{4}\right)\right] \\
& -2 d_{4} d_{2}\left[\cos \left(\theta_{4}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{4}\right) \sin \left(\theta_{2}\right)\right]=0
\end{aligned}
$$

Position analysis

4-bar mechanism: vector algebra approach

Vector equation

$>$ To simplify Eq.7, make the following assumptions

$$
a=2 d_{1} d_{4} \cos \left(\theta_{1}\right)-2 d_{2} d_{4} \cos \left(\theta_{2}\right)
$$

$$
\begin{equation*}
b=2 d_{1} d_{4} \sin \left(\theta_{1}\right)-2 d_{2} d_{4} \sin \left(\theta_{2}\right) \tag{8}
\end{equation*}
$$

$$
-a \cos \left(\theta_{4}\right)+b \sin \left(\theta_{4}\right)+c=0
$$

$\left.c=d_{1}^{2}+d_{2}^{2}+d_{4}^{2}-d_{3}^{2}-2 d_{1} d_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right]$
-To find a solution for Eq.8, use the following identity

$$
\begin{equation*}
\text { If } \Phi=\tan \left(\frac{a}{2}\right) \text { then } \sin (a)=\frac{2 \Phi}{1+\Phi^{2}} \text { and } \cos (a)=\frac{1-\Phi^{2}}{1+\Phi^{2}} \tag{9}
\end{equation*}
$$

Position analysis

4-bar mechanism: vector algebra approach

Vector equation

Assume $\Phi=\tan \left(\frac{\theta_{4}}{2}\right)$ and substitute in Eq. 9

$$
a \frac{1-\Phi^{2}}{1+\Phi^{2}}+b \frac{2 \Phi}{1+\Phi^{2}}+c=0---(10)
$$

Rearrange Eq. 10

$$
a\left(1-\Phi^{2}\right)+2 \Phi b+c\left(1+\Phi^{2}\right)=(c-a) \Phi^{2}+2 b \Phi+(a+c)=0---(11)
$$

Eq. 11 is quadratic equation in Φ and the solution is found as:

$$
\Phi_{1,2}=\frac{-b \pm \sqrt{b^{2}-c^{2}+a^{2}}}{c-a} \longmapsto \theta_{4-1,2}=2 \tan ^{-1}\left(\Phi_{1,2}\right)
$$

Position analysis

4-bar mechanism: vector algebra approach

Vector equation

go back to Eq. 4 to find Θ_{3}. separate the sine $(\sin (\theta))$ and the cosine $(\cos (\theta)$) terms and by equalizing the sine terms with each other or the cosine terms to each other, the following equations will be produced:

$$
\begin{align*}
& d_{3} \sin \left(\theta_{3}\right)=d_{1} \sin \left(\theta_{1}\right)+d_{4} \sin \left(\theta_{4}\right)-d_{2} \sin \left(\theta_{2}\right) \tag{a}\\
& d_{3} \cos \left(\theta_{3}\right)=d_{1} \cos \left(\theta_{1}\right)+d_{4} \cos \left(\theta_{4}\right)-d_{2} \cos \left(\theta_{2}\right) \tag{b}
\end{align*}
$$

Divide (a) on (b)

$$
\theta_{3-1,2}=\tan ^{-1}\left[\frac{d_{1} \sin \left(\theta_{1}\right)+d_{4} \sin \left(\theta_{4-1,2}\right)-d_{2} \sin \left(\theta_{2}\right)}{d_{1} \cos \left(\theta_{1}\right)+d_{4} \cos \left(\theta_{4-1,2}\right)-d_{2} \cos \left(\theta_{2}\right)}\right]
$$

Position analysis

Slider crank mechansim

Problem statement

Find $\boldsymbol{\theta}_{3}$ and S for the crank - slider mechanism shown in figure.

Assume d_{2}, d_{3}, α and a are given data and θ_{2} is input

Position analysis

Slider crank mechansim

$$
d_{2} U_{\theta 2}+d_{3} U_{\theta 3}+a U_{\alpha+90}=s U_{\alpha}
$$

Rearrange

$$
d_{3} U_{\theta 3}=s U_{\alpha}-d_{2} U_{\theta 2}-a U_{\alpha+90}
$$

Loop closure equation

Position analysis

Slider crank mechansim

Loop closure equation

Dot product each side by itself to eliminate $U_{\theta 3}$

$$
\begin{aligned}
& d_{3}^{2}=s^{2}-2 s d_{2} \cos \left(\alpha-\theta_{2}\right)+a^{2}+2 a d_{2} \sin \left(\alpha-\theta_{2}\right)+d_{2}^{2} \\
& \Rightarrow s^{2}-2 s d_{2} \cos \left(\alpha-\theta_{2}\right)+a^{2}+2 a d_{2} \sin \left(\alpha-\theta_{2}\right)+d_{2}^{2}-d_{3}^{2}=0
\end{aligned}
$$

Remember: $\mathrm{U}_{\alpha+90} \cdot \mathrm{U}_{\alpha}=0$ and $\cos \left(\alpha+90-\theta_{2}\right)=\sin \left(\alpha-\theta_{2}\right)$

To simplify the previous equation make the following assumptions

$$
b=-2 d_{2} \cos \left(\alpha-\theta_{2}\right) \quad c=a^{2}+2 a d_{2} \sin \left(\alpha-\theta_{2}\right)+d_{2}^{2}-d_{3}^{2}
$$

and substitute them in loop equation: $s^{2}+b s+c=0$

Position analysis

Slider crank mechansim

Loop closure equation

This equation $s^{2}+b s+c=0$ is quadratic in S and it has solution equal

$$
s_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

go back to loop equation to find Θ_{3} as in the previous example:-

$$
\theta_{3-1,2}=\tan ^{-1}\left[\frac{s_{1,2} \sin (\alpha)+a \cos (\alpha)-d_{2} \sin \left(\theta_{2}\right)}{s_{1,2} \cos (\alpha)+a \cos (\alpha)-d_{2} \cos \left(\theta_{2}\right)}\right]
$$

Position analysis

Example: 4-bar mechanism

Find Θ_{3} and Θ_{4} for the given 4-bar mechanism

Solution

Using the previous analysis for the following values of

$$
\begin{aligned}
& >d_{1}=0.868 \\
& >d_{2}=0.12 \\
& >d_{3}=1.018 \\
& >d_{4}=0.570 \\
& >\theta_{1}=0.0^{\circ} \\
& >\theta_{2}=60.0^{\circ}
\end{aligned}
$$

Position analysis

Example: 4-bar mechanism

Solution

$$
\begin{aligned}
& a=2 d_{1} d_{4} \cos \left(\theta_{1}\right)-2 d_{2} d_{4} \cos \left(\theta_{2}\right)=0.9696 \\
& b=2 d_{1} d_{4} \sin \left(\theta_{1}\right)-2 d_{2} d_{4} \sin \left(\theta_{2}\right)=-0.1247 \\
& c=d_{1}^{2}+d_{2}^{2}+d_{4}^{2}-d_{3}^{2}-2 d_{1} d_{2} \cos \left(\theta_{1}-\theta_{2}\right)=-0.01266
\end{aligned}
$$

$$
\Phi_{1,2}=\frac{-b \pm \sqrt{b^{2}-c^{2}+a^{2}}}{c-a} \longmapsto \theta_{4-1,2}=2 \tan ^{-1}\left(\Phi_{1,2}\right)=-96.58,81.93
$$

To find θ_{3} :
$\theta_{3-1,2}=\tan ^{-1}\left[\frac{d_{1} \sin \left(\theta_{1}\right)+d_{4} \sin \left(\theta_{4-1,2}\right)-d_{2} \sin \left(\theta_{2}\right)}{d_{1} \cos \left(\theta_{1}\right)+d_{4} \cos \left(\theta_{4-1,2}\right)-d_{2} \cos \left(\theta_{2}\right)}\right]=-43.43,28.78$

Position analysis

4-bar mechanism Grashof condition

linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link.

Position analysis

4-bar mechanism Grashof condition

Consider the previous 4-bar mechanism and the values T_{1}, T_{2} and T_{3} :
$\square T_{1}=d_{1}+d_{3}-d_{2}-d_{4}$
$\square T_{2}=d_{4}+d_{1}-d_{2}-d_{3}$
$\square T_{3}=d_{4}+d_{3}-d_{2}-d_{1}$

T_{1}	T_{2}	T_{3}	Grashof condition	Input link	Output link
-	-	+	Grashof	Crank	Crank
+	+	+	Grashof	Crank	Rocker
+	-	-	Grashof	Rocker	Crank
-	+	-	Grashof	Rocker	Rocker
-	-	-	Non-Grashof	0-Rocker	0-Rocker
-	+	+	Non-Grashof	T-Rocker	T-Rocker
+	-	+	Non-Grashof	T-Rocker	0-Rocker
+	+	-	Non-Grashof	0-Rocker	T-Rocker

Position analysis

Exercise \#1 : inverted slider mechanism

Find θ_{3} and s for the inverted slider mechanism shown in figure. Assume d_{1}, d_{2}, d_{3} and θ_{1} are given data and θ_{2} is input

Position analysis

Exercise \#1 : 6 bar mechanism

Analyze the 6-bar mechanism shown in figure If
$>\theta_{1}, \Theta_{7}, \alpha, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}, d_{7}$ and h are known
$>\theta_{2}$ is input
$>\Theta_{3}, \Theta_{4}, \Theta_{5}$ and Θ_{6} are unknowns
Hint: loop closure equations are:

$$
\begin{aligned}
& >d_{2} U_{\theta 2}+d_{3} U_{\theta 3}=d_{7} U_{\theta 7}+d_{4} U_{\theta 4} \\
& >d_{2} U_{\theta 2}+h U_{\alpha+\theta 3}=d_{5} U_{\theta 5}+d_{6} U_{\theta 6}+d_{1} U_{\theta 1}
\end{aligned}
$$

